Surface Triangulation - The Metric Approach

نویسنده

  • Emil Saucan
چکیده

We embark in a program of studying the problem of better approximating surfaces by triangulations(triangular meshes) by considering the approximating triangulations as finite metric spaces and the target smooth surface as their Haussdorff-Gromov limit. This allows us to define in a more natural way the relevant elements, constants and invariants s.a. principal directions and principal values, Gaussian and Mean curvature, etc. By a ”natural way” we mean an intrinsic, discrete, metric definitions as opposed to approximating or paraphrasing the differentiable notions. In this way we hope to circumvent computational errors and, indeed, conceptual ones, that are often inherent to the classical, ”numerical” approach. In this first study we consider the problem of determining the Gaussian curvature of a polyhedral surface, by using the embedding curvature in the sense of Wald (and Menger). We present two modalities of employing these definitions for the computation of Gaussian curvature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic surface meshing with conformal embedding

This paper introduces a parameterization-based approach for anisotropic surface meshing. Given an input surface equipped with an arbitrary Riemannian metric, this method generates a metric-adapted mesh with user-specified number of vertices. In the proposed method, the edge length of the input surface is directly adjusted according to the given Riemannian metric at first. Then the adjusted surf...

متن کامل

Mesh Generation on Piecewise Riemannian Surfaces

We shall describe a mesh generation technique on a composite trimmed Riemannian surface. The edge size function is a fundamental entity in order to be able to apply the process of generalized Delaunay triangulation with respect to a Riemannian metric. Unfortunately, the edge size function is not known a-priori in general. We describe an approach which invokes the Laplace-Beltrami operator to de...

متن کامل

Self-delaunay Meshes for Surfaces

In the Euclidean plane, a Delaunay triangulation can be characterized by the requirement that the circumcircle of each triangle be empty of vertices of all other triangles. For triangulating a surface S in R3, the Delaunay paradigm has typically been employed in the form of the restricted Delaunay triangulation, where the empty circumcircle property is defined by using the Euclidean metric in R...

متن کامل

Self-delaunay Meshes for Surfaces

In the Euclidean plane, a Delaunay triangulation can be characterized by the requirement that the circumcircle of each triangle be empty of vertices of all other triangles. For triangulating a surface S in R3, the Delaunay paradigm has typically been employed in the form of the restricted Delaunay triangulation, where the empty circumcircle property is defined by using the Euclidean metric in R...

متن کامل

Self-delaunay Meshes for Surfaces

In the Euclidean plane, a Delaunay triangulation can be characterized by the requirement that the circumcircle of each triangle be empty of vertices of all other triangles. For triangulating a surface S in R3, the Delaunay paradigm has typically been employed in the form of the restricted Delaunay triangulation, where the empty circumcircle property is defined by using the Euclidean metric in R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.GR/0401023  شماره 

صفحات  -

تاریخ انتشار 2004